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Autonomous vehicles

Autonomous vehicles drive the development of
many new machine learning technologies.

The most advanced cases are autonomous
trucks in the US. This is happening today (e.g.
UPS).
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Waymo has already 20 million miles of
experience with self-driving taxis on public roads.
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https://www.voutube.com/watch?v=yjztvddhZml
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Tesla Hydranet architecture

> Neural network architecture for full
self-driving (FSD) function in Tesla cars

> Sensor fusion of video streams from eight
cameras into one unified 3D vector space

> Based on transformer architecture

> Solves multiple isolated problems in one
architecture

8 Cameras 3-Dimensional “Vector Space”
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Human: Hey, how are you doing?
AI: I'm good! What would you like to chat about?

Human: Have you done any coding with Python?
- - vee AI: Yep! I've done a lot of Python coding as it is my favorite language.
) ) Human: Nice, it's my favorite too! What have you done with it?
AI: Oh, a lot. I have done everything from creating Python modules to creating micro-
websites with it.
Human: What web framework do you use?

AI: I used to use Django, but it was too difficult for me. I have found Flask is a better
option asit's lighter and simpler.

Autoregressive language model trained on 6 million Human: Wow, I agree 100%. Have you used WebSocket at all?
. AI: Yes, I actually have written a chatbot using it!

text articles. Trienaami A .

GPT-3's full version has a capacity of 175 billion

machine learning parameters.
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https.//www.theverge.com/21346343/gpt-3-explainer-openai-examples-errors-agi-potential
https://towardsdatascience.com/have-you-seen-this-ai-avocado-chair-b8ee36b8aea
https:/arxiv.org/pdf/2102.12092.pdf
https.//www.twilio.com/blog/ultimate-guide-openai-gpt-3-language-model

DALL-E, a variant of GPT-3 was trained on a
combination of text and images.
It delivers impressive results for text to image tasks.

Latest image generation model shows very
impressive capabilities (stable diffusion).
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Google SayCan Robot

Concept for clever robots

> use of autoregressive language model to
continue the currently observed status

> collect many different possible
continuation stories

> filter best option in relation to abilities
(affordances) of the robot
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| spilled my drink, can you help?

You could try using a
GPT3 vacuum cleaner.

Do you want me to find

LaMDA a cleaner?

I'm sorry, | didn't mean

FLAN to spill it.

(a) Large Language Models (LLMs)

| spilled my drink, can you help?

LLM Value Functions

“find a cleaner” nda
“find a sponge” “find a Sponge
Dota e ees oo “go to the trash can”
“pick up the sponge” ptck up lhe spange
“try using the vacuum”

SayCan
A cner”
“find a sponge '
“go to the trash car B
“pick up the sponge
vy using the o

(b) SayCan

| would:

1. find a sponge

2. pick up the sponge
3. come to you

4. put down the sponge
5. done

https://arxiv.ora/pdf/2204.01691.pdf
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Alpha Fold

The protein folding problem requires a solution
that can estimate the 3D structure of a protein
given it's amino acid sequence as input.

Breakthrough by deepmind solution in 2020.

The Alpha Fold 2 model is an end-to-end
approach from amino acid sequence input to 3D
shape and 3D distances between amino acid
residues.

The model contains a transformer core which
uses parts of the output also as input to perform
evolutional refinement in iterative steps.

Now available as open source and as a protein
database with 200 million entries in 2022.
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https://www.deepmind.com/research/highlighted-research/alphafold/timeline-of-a-breakthrough

https://www.nature.com/articles/s41586-021-03819-2
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Transformers

Based on a refinement of the attention idea.

Learns to relate information from different parts
of the structured input.

Attention can be understood as a key value store
where the keys, values and queries are learned
from the data in order to fulfill a given supervised
task.

arXiv:1706.03762v5 [cs.CL] 6 Dec 2017
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Abstract

The dominant sequence transduction models are based on complex recurrent or
convolutional neural networks that include an encoder and a decoder. The best
performing models also connect the encoder and decoder through an attention
mechanism. We propose a new simple network architecture, the Transformer,
based solely on attention ing with and

entirely. Experiments on two machine translation lasks slmw lhcsc models to
be superior in quality while being more
less time to train. Our model achieves 28.4 BLEU on l.hc WMT 20l4 English-
to-German translation task, improving over the existing best results, including
ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task,
our model i anew singl del f-thy BLEU score of 41.8 after
training for 3.5 days on eight GPUs, a small fraction of the training costs of the
best models from the literature. We show that the Transformer generalizes well to
other tasks by applying it successfully to English constituency parsing both with
large and limited training data.

1 Introduction

Recumcm neural networks, long shon -term memory [13] and gated recurrent [7] neural networks
in have been firmly as state of the art approaches in sequence modeling and

“Equal contribution. Listing order is random. Jakob proposed replacing RNNs with self-attention and started
the effort to evaluate this idea. Ashish, with Illia, designed and implemented the first Transformer models and
has been crucially involved in every aspect of this work. Noam proposed scaled dot-product attention, multi-head
attention and the parameter-free position representation and became the other person involved in nearly every
detail. Niki designed, implemented, tuned and evaluated countless model variants in our original codebase and
tensor2tensor. Llion also experimented with novel model variants, was responsible for our initial codebase, and
efficient inference and visualizations. Lukasz and Aidan spent countless long days designing various parts of and
implementing tensor2tensor, replacing our earlier codebase, greatly improving results and massively accelerating
our research.

Work performed while at Google Brain.

*Work performed while at Google Research.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.




Control of tokamak plasma

Plasma shape and configuration control
is a key function in nuclear fusion

reactors based on the tokamak principle.

A model developed by google DeepMind
shows promising results. The model is
based on reinforcement learning
methods and it controls the plasma via
control coils.

Training requires a very detailed
simulation model of the system.

https://www.nature.com/articles/s41586-021-04301-9
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Magnetic control of tokamak plasmas
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Near future of Al development

Multi-modal transformers

Learning from little data (one shot learner)
Explainability, safety and ethical Al, regulation
Self structuring systems (AutoML)
Neuromorphic computer (silicon Al)
Quantum-* (machine-learning, training,...)
Artificial general intelligence

YYVYVVYVY

https://youtu.be/IcFsgsCHCf4




Anomaly detection in energy flow data

What is given

> connected sensors that deliver residual
current measurements (RCM) from
industrial power installations

> datain 1to 60 second resolution

V\/>hat %Sela;?%giezailtzforabruptanomaliesin q“ //m/”m””mlll ¥ 4

> alarm signals for dangerous long term AibNe2, MERRieT eeon ghanicle:
trends Name Unit Description
DC mA Direct current component of residual current
AC mA Sum of all alternating current components
Challen ge 50 Hz mA Residual current in 50 Hz band
; ; ; ; <100 Hz mA Residual current in below 100 Hz band
= eaCh lnSta”atl(_)n IS dlfferent . o 150 Hz mA Residual current in 150 Hz band
> many installations exceed normative limits 100 Hz-1 kHz mA Residual current in mid frequency band
. >1 kHz mA Residual current in 1 kHz band
for short times >10 kHz mA Residual current in high frequency band

source: https://www.mdpi.com/1996-1073/15/2/582
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The current solution

Autoencoder
> variational autoencoder for control
over shape of latent space

Measurement of the reconstruction error
> estimation of anomaly
> identification of type of anomaly

Clustering of latent space
>  k-Means clustering for estimation of
operational states of system

d State Estimation Training Pipeline

latent

o space
multivariate
training data
(RC values)
clustering transformation
kMeans table
scaling
encoder
cleaning decoder  |€——
reconstruction
error
means

b State Estimation Prediction Pipeline
state
estimation
classification transformation

scaling
encoder

cleaning decoder |[€——

relative relative
» reconstruction reconstruction

error error

multivariate

sensor data

(RC values) x,

Figure 1. Simplified models of the data processing pipelines: (a): Principle of the state estimation
training pipeline. (b): Principle of the state estimation prediction pipeline.

source: https://www.mdpi.com/1996-1073/15/2/582
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Autoencoder

Symmetrical neural network with a small latent
space vector and identical input and output
configuration.

Trained to reproduce input data at output.

Generates a dense vector representation of
training data in the latent space.

Applications

> anomaly detection

> generative models

> reconstruction of input data

Input

K-

Original
input

Latent Space
Representation

Encoder

Reconstructed input

o

—>i—> Decoder

-

Reconstructed

Compressed
representation

input

https:/arxiv.org/pdf/2003.05991 .pdf

https://hackernoon.com/autoencoders-deep-learning-bits-1-11731e200694

https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798
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Reconstruction error

After training an autoencoder to reconstruct the

input X, the construction error can be calculated Line plot of reconstruction_error
as: -
s 1 Si\2
errory, = Z(X — XY o 2 b
i=1 S
‘DI
. C
The error of reconstruction can be used for: 2
> .
. . @ o005 ’:3
> anomaly detection: use the reconstruction = L
. . . O
error as a signal for anomalies. E.g. high o
error indicates unseen data. ! i e b9 i
> input reconstruction: use the Data Index

reconstruction error to find regions with
distortions (e.g. noise).

https:/blog.goodaudience.com/neural-networks-for-anomaly-outliers-detection-a454e3fdaae8
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Variational Autoencoder

l Input
Variational autoencoders have a latent space Dense - 500
vector which consists of two vectors of size N. ¥
One part is the mean value y of the latent
. . . Dense - 120
variable and the second part is the variance o of
the latent variable.
n o
Dense - 30 Dense - 30
a4
i ’ Sample - 30
\4
Dense - 120
Dense - 500
- - 2 o B -~ 2 4 l Output
Standard Autoencoder Variational Autoencoder
(direct encoding coordinates) (pand o initialize a probability distribution)

https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf
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Variational Autoencoder

. S . normal AE variational AE

The loss function for the training contains two
parts. 3
> One to reduce the reconstruction error of ° . .

the input values and g i
> one that forces the distribution of the B yi

values in the latent space to be normal IR AT T

distributed (mean 0 and std dev 1). BRI AR o f e T

0 . "“‘0‘7 e X3
This results in a tense latent space distribution of - . '.& :
the representations of the input values. _ S
This makes it possible to sample from the latent
space and use the decoder part for generation. ’

https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf
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Application and outlook

Application in

>

>

>

industrial installations with high energy
consumption or fire risk

industrial installations with high availability
demand

photovoltaic systems

Further development

>

>

integration of several anomaly detection
models

clustering of anomalies to filter regular
anomalies from irregular ones

experiment with time-series transformers
in order to distinguish between anomalies
in time sequence and anomalies in relation
between features
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Abstract

Faults and uni conditions in grid: pt ic systems often cause a change of the residual current. This article
describes a novel machine learning based approach to detecting anomalies in the residual current of a photovoltaic system. It can
be used to detect faults or critical states at an early stage and extends i based { . For this
study, a p in-the-loop app! 1 was carried out, in which typical faults have been injected under ideal and realistic
operating conditions. The investigation shows that faults in a photovoltaic converter system cause a unique behaviour of the
residual current and fault patterns can be detected and identified by using pattern ition and variati al

machine learning algorithms. In this context, it was found that the residual current is not only affected by malfunctions of the
system, but also by volatile external influences. One of the main challenges here is to separate the regular residual currents
caused by the interferences from those caused by faults. Comp. to which respond to absolute changes
in residual current, the two machine learning models detect faults that do not affect the absolute value of the residual current.
View Full-Text

Y 3 energies; pl 5 Pl ] current;
uction error

¥ Show Figures

source: https://www.mdpi.com/1996-1073/15/2/582
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Machine Learning in physics

The subjects of the sciences of physics are
sometimes way more complex than the subjects
of the science of machine learning (personal
hypothesis)

So it may be way more complex for a data
scientist to enter the center zone than for a
physicist to develop from the blue zone to the
center zone.

However, a strong interaction between domain
expertise and data science knowledge is required
for successful relevant machine learning
projects.




Why are ML projects different to software projects?

Development of software has become a well Machine learning has not yet reached this status.

UﬂderSTOQd and managed capability of Many ML projects have to deal with the

organizations. uncertainty if the expected results can be
delivered.

f'e jJump.py e Sim.py \g, ['e Optimization_config.py 28 conf.yaml — jumper.yaml e example.py

sys, 0s
sys.path.append(os.getcwd())

ass. Type(object):
__init( )=
.run()

run( )

1t

https://towardsdatascience.com/machine-learning-engineer-versus-software-engineer-fb59f8cba9dd
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Mindsets |

Team mindset

> focus on domain impact vs data science

> jtisvery easy to be drawn into very
interesting data science and machine
learning problems

Project mindset

>  set realistic goals for ML projects
> manage customer expectations
> avoid isolation of ML teams

source: https://towardsdatascience.com/the-secret-of-delivering-machine-learning-to-production-1f6681f5e30c
https:/martinfowler.com/articles/cd4ml.html
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Mindsets I

Fail-fast principle

YYVYVY

>

Vv

support experimentation with ML . ' L
error tolerant project setup L;/-\\ g =

provide suitable ML infrastructure m : .
test and monitor extensively I ~ -
implement continuous integration for ML TQ)’ TQV Q%*Ni SU(CESS |

~

Focus on end-to-end problem U ’

focus on complete cycle from data
acquisition to integration of results
start with a baseline model
implement incremental improvements

source: https://towardsdatascience.com/the-secret-of-delivering-machine-learning-to-production-1f6681f5e30c
https:/martinfowler.com/articles/cd4ml.html
https:/developerexperience.io/practices/fail-fast
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Life cycle of ML projects

4 )
requirements
- J
4 )
concept el PRI certification decommissioning
management management
o J
data collection model data . training validation deployment malntgnapce d
L preparation monitoring

trainings accuracy too poor

new requirements

validation accuracy too poor degradation of quality

model does not fit into target system
validation on target fails



More things to consider

Data management

> organize your data

> atleast metadata should go into a
database

Model management
> prevent use of old or wrong models

Model health monitoring

> detect long term degradation of model
quality since data distributions may change
over time

Machine learning pipeline
> investment will pay off in iteration cycles

https://docs.microsoft.com/en-us/azure/machine-learning/preview/model-management-overview

AUTHOR

Create Model

Create Scoring File

—

PREPARE TO SERVE

Register Model
(model v1)
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Create Container
Image

SERVING ENVIRONMENT

Score
calls
Local

DSVM PC

t ¢

Retrain Model

—

Register Model
(model v2)

Conditional Deploy
(deployment v1)

ACS Kubernetes Cluster

Web service and model
telemetry

labels
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Machine learning generates statistics not causality

ML enforces simple models.

Errors in data may lead to low quality
models.

E.g. Husky case from LIME paper:

> training data contained wolves in
snowy background and huskies
in gras background.

> Network learned to look at the
background only

(a)

I

.

Husky classified as wolf (b) Explanation

source: LIME paper https:/arxiv.org/pdf/1602.04938 pdf
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Conclusions

Machine learning and deep learning provide
many valuable methods and solutions which can
be utilized in real-world, production level
applications.

However, adaptations and deviations from
normal software project setups have to be
considered.

A crucial decision is the composition of the
project team as a mixture of domain experts and
data science experts.

Unless practical experience has already been
gathered with ML in a problem domain, prepare
for iterations and even failure of approaches.

Extra care shall be given to data and model
management as well as permanent monitoring of
model and data health.

Do not put too much trust in ML models since
current ML does learn statistics but not
necessarily causality.



Questions?

dietmar.millinger@aiaustria.com
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