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EuroCC project - goals
 To promote and provide support in:

 High Performance Computing - HPC
 Machine Learning - ML
 High Performance Data Analitycs – HPDA (a.k.a 

BigData)
 Our mission is to help you (free of charge) in the 

above areas 
 support is targeted towards public institutions, 

academia and industry/SMEs 
 among others, it includes consulting or preparation 

of Proof-of-Concepts. Ask me for more details 
during coffee break.

 For additional info see also the “EuroCC – National 
Competence Center for HPC” talk tomorrow at 12:20



EuroCC project and this study
 Following slides present collaboration 

between experts of polish NCC and 
employees of Bielański Hospital in Warsaw 

 We helped to analyze mortality data in order 
to determine if model linking levels of air 
pollution to number of deaths can be built

 Work of:
 Krzysztof Nawrocki (NCBJ; ML expert)
 Wojciech Moraczewski (anesthesiologist)
 Prof. Marek Dąbrowski (cardiologist)
 Dorota Gałczyńska-Zych (head of Bielański 

Hospital)
 Tomasz Fruboes (NCBJ)

Note: in ½ hour sadly I won’t be 
able to fit all analysis details. See 

proceedings for unabridged
version, incl. extensive 

medical discussion



How it all started
 Polish National Health Fund (NFZ; polish agency 

financing public healthcare) noted, that in Jan 
2017 number of deaths in Poland increased 
23.5% wrt Jan 2016 

  Analysis done by NFZ gave four possible reasons:
● Low ambient air temperature
● Record high air pollution
● Flu epidemic
● Changes in the rules for reimbursement of 

treatments of acute coronary syndrome
 We decided to check if this effect would be visible 

on a single-hospital level and what we can learn 
from data present in Hospital Information System 
● data anonymized prior to the analysis by 

hospital staff
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Do we observe mortality excess for hospital data?

 Analyze 2014-2018 data. Check number of deaths in every month (time series analysis)
 Two approaches followed:

● With R Anomalize library - decompose time series into seasonal changes/trend/random 
fluctuations. Check if given point did not fluctuate to far wrt seasonal+trend baseline 
(use Generalized ESD Test for Outliers)

● With permutation test (exact test; no assumptions on data distribution) – how different 
is given month (e.g. Jul’15) wrt to same period in other years (Jul’14, Jul’16,Jul’17, Jul’18) 



With both approaches we see anomaly for Jan 2017



Building mortality model – can we 
explain the Jan 2017 excess with ML?

 Mortality depends on ambient 
air temperature prior to date of 
hospital admission

 Taking ambient air temperature 
prior to day of death makes no 
sense, as patient may stay in 
Intensive Care for a long period 
of time

Air temp. prior to admission Air temp. prior to death



Mortality model

  We modell daily expected number of deaths as a 
function of average ambient air temperature 

 Observed number of deaths follows Poisson 
distribution with the above expected value

 With such approach we are able to obtain p-
value for every month – probability of obtaining 
observed or larger number of deaths wrt model 
prediction
● The lower p-value -  the more anomalous is 

given month
 Obtained model (based only on ambient air 

temperature) is not able to explain the Jan 
2017 excess



New input variables

 For next iteration we added variable corresponding to air pollution levels (PM10 – amount of  inhalable 
particles, with diameters of 10 micrometers and smaller; measured in μg/m3)

 We also tested multiple ways of input variables averaging:
● Different time offset w.r.t. admission date
● Different window size for averaging
● For air pollution input variable we also tested if discriminating input data against a threshold of 50 μg/m3  (i.e. 

current `safe` level, specified by polish environment agency) leads to a better model

Above leads to  large number of models. How to pick best one?
 Typically, one will use k-fold cross validation

● Penalty – longer computation time (equal to number of folds)
 For linear models, alternative exist!



Variable selection procedure

Best input variables selected by comparing models using Akaike information criterion (AIC):
 Method (asymptotically) equivalent to k-fold cross validation (for linear models)
 Penalty for each additional input variable in model
 Single fit (whole dataset) per tested set of variables
 Allows for quantitative models comparison. Procedure:

● Compare some model (“model B”) to the best performing model found (“model A”)
● Result - PAIC := probability, that model B in fact describes data better than model A



Mortality model

Input variables selected for best model:
● windowed average ambient air temperature – days 17...13 prior to admission
● windowed average of PM10 level – days 8...1 prior to admission, with 50 μg/m3 threshold
Second best model was temperature only model, with PAIC = 0.06 - discarded



P-values comparison – temp+PM10 vs temp-only model

Best model
- temp. + PM10thr

(both windowed avg)

Temp. (windowed avg)
only model



Number of deaths attributed to air pollution



Summary

 Number of deaths observed in Jan 2017 in 
Bielański Hospital is anomalous (consistent 
with country-wide observation)
● Excess due to respiratory-related deaths

 Mortality model utilizing ambient air 
temperature and air pollution as input 
variables is able to explain the excess

 Model attributes 8% of deaths observed in 
Jan 2017 to air pollution

See proceedings for a more 
detailed version, incl. extensive 

medical discussion
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