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Strong Lensing

A distant galaxy or quasar
produces multiple, highly
distortedimages because
of the gravitational field of
the foreground galaxy or
a nearby massive

astronomical body.

galaxy cluster

- lensed galaxy images

distorted light-rays




A closer look at Strong
Gravitational Lenses

Image, faken with the NASA/ESA Hubble Space Telescope. The two The image of an Einstein cross 2237+0305 as an example of a

eyes are the galaxies SDSSCGB 8842.3 and SDSSCGB 8842.4 and the gravitationallens. The explanation for this pattern claims that it is
misleading smile lines are actually arcs caused by strong gravitational produced by a galaxy which deflects the light from a quasar into four
lensing. distinct images
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Why SLs are Important

-

To estimate the universe's dark matter
distribution.

\_
(
To constrain the cosmological models.

N\

-
To measure the Hubble constant

independently of cosmic distance
dodder

$$$$$$




Upcoming Large Scale Surveys

» The advanced missions such as the Euclid, and LSST is expected

to find around 10° from around 107 astronomical objects.

» Non-automated techniques will be highly challenging and

time-consuming.

» We propose a new automatedarchitecture based on the

principle of self-attentionto find SLs.



Bologha Lens Challenge

» This dataset mocks a ground
based, multi-band survey.

» The training set 20'000 x 4 images.

» The challenge data set consists of
100'000, (101 x 101) px imagesin

each of four bands (u,g.r.i).

Metcalfet al. 2019



Meftrics for Evaluation

>

Area under the receiveroperating characteristic curve (AUROC) assessesthe overall ability of

a classifierto distinguish between classes.

NTrue positives NEqise positives
TPR = P FPR = b

’

NTrye positives"‘NFalse Negatives NFEaise positivestNTrue Negaitves

TPR, is defined as the highest TPR reached, as a function of the p threshold, before a single

false positive occurs in the test set of 100,000 cases.

TPR,o is defined as the TPR af the point where less than ten false positives are made.

Qa) NCBJ



Self-Attention to FInd SLs

» All the current modelsin

astronomy uses CNNs even
though the current state-of-
art techniquesin computer
vision uses tfransformers

and EfficientNets.

Can self-attention based
models or tfransformers can
replace CNNs in astronomy ¢

02715v3 [astro-ph.GA] 17 Jun 2020
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ABSTRACT

We report new high-quality galaxy scale strong lens candidates found in the Ki
data release 4 using Machine Learning. We have developed a new Convolutional
(CNN) classifier to search for gravitational arcs, following the prescription by Petri
and using only r—band images. We have applied the CNN to two “predictive samp
red galaxy (LRG) and a “bright galaxy” (BG) sample (r < 21). We have fow
probability candidates, 133 from the LRG sample and 153 from the BG sample. We
these candidates based on a value that combines the CNN likelihood to be a len:
score resulting from visual inspection (P-value) and we present here the highest 82 r
with P-values > (0.5. All these high-quality candidates have obvious arc or point-lik
the central red defector. Moreover, we define the best 26 obj all with scores 1
a “golden sample” of candidates. This sample is expected to contain very few fa
thus it is suitable for follow-up observations. The new lens candidates come parti
more extended footprint adopted here with respect to the previous analyses, parti
predictive sample (also including the BG sample). These results show that machi
are very promising to find strong lenses in large surveys and more candidates that
enlarging the predictive samples beyond the standard assumption of LRGs. In the f
apply our CNN to the data from next-generation surveys such as the Large Synoptic {
Euclid, and the Chinese Space Station Optical Survey.
Subject headings: gravitational lensing: strong
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ABSTRACT

We performed a search for strong lens galaxy-scale systems in the first data release of the Dark Energy Survey (DES), from a color-
selected parent sample of 18 ?45 029 Luminous Red Galaxies (LRGs). Our search was based on a Convolutional Neural Network
(CNN) to grade our LRG selection with values between 0 (non-lens) and 1 (lens). Our training set was data-driven, i.e. using lensed
sources taken from HST COSMOS images and where the light distribution of the lens plane was taken directly from DES images
of our LRGs. A total of 76 582 cutouts obtained a score above 0.9. These were visually inspected and resulted in two catal, The
first one contains 405 lens ¢ idates, where 90 present clear I features and counterparts, while the others 3135 require more
evidence, such as k . A total of 186 umli es were totally new identified in this
search. The second catalog i i
For the 90 best lens we carried uul col of [IJe lens and source Iwh{ without fitt
profile 1o the data. The method turned out to be very efhuem in the deblending, even for very compact obje for objects with
very complex morphology. Finally, from the 90 best lens candidates we selected 52 systems having one siagle deflector, to test an
automated modeling pipeline which successfully modeled 79% of the sample within an acceptable amount of computing time.

Key words. Gravitational lensing: strong — Surveys — Techniques: image processing
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Transtormer model for Strong Lens

Detection

We can assume that the Encoder

model works in 3 phases.

| Output ———

CNN - To extract the Features

Encoder - To filter the relevant Features

)

FFN

Image

. " Input 4 .
of the image |. r—» ‘ CNN Backbone ‘ | Encoding |

FFN — To learn the relevant Features

[ Positional

Thuruthipilly et al. 2022



Results From the Models

Accuracy on

Qa) NCBJ

Model Name Model Structure Challenge Set
CNN 1 5 CNN Layers 88.21
CNN 2 4 CNN Layers 86.74
CNN 3 8 CNN Layers 89.91
CNN 4 3 CNN Layers 88.49

Lens Detector 1 CNN 1+1 His+1(E) 89.57
Lens Detector 2 CNN 2+ 1H + 1(E) 88.13
Lens Detector 3 CNN2+2H + 1(E) 88.00
Lens Detector 4 CNN 2 + 2 Hy, + 1(E) 88.12
Lens Detector 5 CNN 2 +4Hg + 2 (E) 88.46
Lens Detector 6 CNN 2 + 4 H»s + 4(E) 89.51
Lens Detector 7 CNN 3 + 8 Hjxs + 2(E) 01.45
Lens Detector 8 CNN 4 + 2 Hyzs + 2 (E) 89.43

Lens Detector 9
Lens Detector 10
Lens Detector 11
Lens Detector 12
Lens Detector 13
Lens Detector 14
Lens Detector 15
Lens Detector 16
Lens Detector 17
Lens Detector 18
Lens Detector 19
Lens Detector 20
Lens Detector 21

3 CNN Layers + 2 H3g4 + 2 (E)
5 CNN Layers + 8 Hi»g + 2 (E)
5 CNN Layers + 8 Hi»g + 4 (E)
8 CNN Layers + 8 Hj»3 + 4 (E)
8 CNN Layers + 8 Hj»3 + 4 (E)
8 CNN Layers + 8 Hi,3 + 4 (E)
8 CNN Layers + 8 Hi»g3 + 4 (E)
16 CNN Layers + 8 H s + 8 (E)
16 CNN Layers + 8 H 3 + 8 (E)
16 CNN Layers + 8 Hjx + 8 (E)
16 CNN Layers + 16 H23 + 8 (E)
25 CNN Layers + 8 Hjpg + 4 (E)
8 CNN Layers + 8 Hjps + 4 (E)

89.61
90.58
90.45
89.82
91.94
91.95
92.99
90.97
92.19
92.21
90.03
91.26
92.79

Thuruthipilly et al. 2022




Transformer Encoder vs CNN

> The Encoder Networks

performs better than the
CNN.

The Encoder depends on the
CNN to extract the features,
and the model is only as
good as the CNN, but always
better.

NCBJ

SWIERK

Thuruthipilly et al. 2022
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The Confusion matrix of the Convolution The Confusion mo’rrpi of the Trqnsformer
_ model 7 (Accuracy = 91.45) with
Model 3 (Accuracy = 89.91) on the |
Convolution Model 3 as the backbone
Challenge data.

on the Challenge data.



Since the Encoder is based on self-attention, the encoder layers prevent the model from
overfitting by only learning the useful features extracted by the CNN and provides more

stability to the Model.

Variation of Loss Function with epochs for Lens Detector 13 and CNN 3, respectively.

Transformer Model Loss Convolution Model Loss
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Thuruthipilly et al. 2022



Prediction Capacity

Probability Distribution Generated by the Model

50000
NN S
B | ens Detector 15
40000 -
The encoder model can assign a probability for an input to
30000
i} ~~ ~~ .
= be lens (P ~ 1) or non-lens (P ~ 0) with greater confidence
=
= 20000 1
than the CNN.
10000 1
D = I I I ! Jl_
0.0 0.2 0.4 0.6 0.8 10

Probability of the Input Image be a Strong Lens

Thuruthipilly et al. 2022



Testing

on KiDS survey images




Kilo Degree
Survey (KIiDS)

KiDS, the Kilo-Degree Survey,
is a large optical imaging
surveyin the Southern sky

Using the VLT Survey
Telescope (VST), located at
the ESO Paranal
Observatory, KiDS has
mapped 1350 square
degrees of the night sky in
four broad-band filters (u, Q.
Ballil.




Preliminary Tests on KiDS data

Q We are searching for lensing galaxiesz_| < 0.4 in KiDS DR4

D We created cutouts of 200 tiles (~20 % of total)

IE: Cutoutsof galaxiesin 4 and 3 optical filters givento two different models

|ﬁ Most probable candidates (prediction probability >0.95) are human inspected



Human Inspection

» Candidateswere checked by multiple

humans (4 people).

» Scores. 5 (sure), 3 (maybe), 1

(interesting), 0 (nope).

» Candidatesthat wererecognized by at
least 2 poeple as potenciallens or got 5

(sure lense were further considered).

Qa) NCBJ

KIDS 11.9 -33.1
1-324852.37

&0

a0

100
0 25 50 75 100

5 : For sure a bear



Some numbers

> KiDS collaborationfound 268 HQ > We test our model on ~200 ftiles
s’rro.ng lens candidates in Af] 30,0 files. >  With only a redshiftselectionwe get
> InLietal 2021 (latest publication) ~1'500'000 galaxies
they use two ResNets frained on
Synthetic data and
tested it on ~300 files. o 16389 candidates
> After the galaxy selection the model >~ 70HQ strong lens

retrievesout of ~1'500'000 galaxies
o 5810 candidates
o 97 HQ strong lenses

o 1.7% true positives @ Too many false positivesl!

> QOur modelselects

o 0.4% ftrue positives



Pitfalls and

False
Positives - |

20

The training data is purely simulated and relatively
simple compared to the data from the KiDS survey.

We are looking for SLs in the entire data sample,
whereas the previous searches on KiDS only focused
on the Luminous Red Galaxies (LRGs) and

bright galaxies (BGs).

We have not cleaned the data to remove glitched
images.

As a result, the number of false positivesin the
candidate sample can be high.



Pitfalls and False Positives - |

0
3 . 10
2

50 &0 5

1
0 0

100 100

0 50 100 0 50 100

A real strong gravitational strong lens seen

An example from simulated dataset from the survey



Pitfalls and False Positives -

1.0 ID KiDSDR4 J230330.146-344935.86

KIDS 345.4 -35.1 myindex 6439 prob
0p

0 0
20

20 20

40 40

100

100
0 25 50 75 100

Our prodigal candidate 1!



Pitfalls and False Positives - i

20 20 20

Probability assigned
by our model
=0.99998873

100 100 100

0 25 50 ) 100

Probability assigned
by our model
=0.973774







We found one lens ;')

ID: J000014.372-281135.77 tile KIDS 0.0 -28.2 z:0.31 mag:18.89 ra:0.06 dec:-28.193

0 0 0

20 20 20
40 40 40 o i, a 40
60 60 60 =1 60
80 80 80 : 80

100
0 20

K3 e



(—)

and then more (C_57)
\ e \ (=

ID: J012523.730-310531.80 tile KIDS_21.0_-31.2 z:0.3 mag:19.84 ra:21.349 dec:-31.092 ID: J134426.383+005143.03 tile KIDS_206.0_0.5 z:0.26 mag:18.76 ra:206.11 dec:0.862

0 0 0

0 0 0

20 20 20 20 20 20

40 40 40 40 40 40

60 60 60 60 60 60

80 80 80 80

100 100

100
80 100 0 20 100 0 20 40 60 80 100

40 60 80 100

ID: J103246.492+015819.74 tile KIDS_158.0_1.5 z:0.29 mag:21.53 ra:158.194 dec:1.972 ID: J142713.691-020554.209 tile KIDS_216.6_-2.5 z:0.34 mag:22.19 ra:216.807 dec:-2.098

0 0

0

0 0

0

20 20 20 8 20 20 20 8 20

40 40 40 40 40 40 40

60 60 60 4 60 60 60 60

80 80 80 80 80 80

100

100 2 ‘.
100 20 40 60 80 100 0 20 40 60 80 100

100
0 100

0
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Work In Progress...

The simulated images are clearly too different from
the real life lenses— We know it!

Future perspectives:
Retrain on redl lifelenses
Apply data augmentation

Keep training with an active learning approach

We will keep you posted! Wish us luck




Summary

Encoder modelshave more stability than CNN's, which minimizes the need for
monitoring.

The architecture proposed here is very simple and robust and has a high resistance
to overfitting.

The proposed method might be complementary to the methods used previously on
KiDS data-we find some lenses!

On going project!

~
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Thank you

QUESTIONS ¢







No of Heads and Encoders

» Increasing the number of heads and the depth of the Encoder fastens the learning curve for the model and give

better performance.

Accuracy on
Model Name Model Structure Challenge Set

Lens Detector 2 CNN2+1H+ 1(E) 88.13

Lens Detector 3 CNN 2 +2H + 1(E) 88.00

Lens Detector 4 CNN 2 + 2 Hy, + 1(E) 88.12

Lens Detector 5 CNN 2 + 4 Hgy + 2 (E) 88.46

Lens Detector 6 CNN 2 + 4 Hyg + 4(E) 89.51

» The Encoder's performance depends upon the total no of parameters; the more the parameters, the better the

learning curve and validation accuracy.



Transter Learning

» Training time was considerably lowered by using transfer learning.

Accuracy on

Model Name Model Structure Challenge Set
Lens Detector 5 CNN 2 + 4 Hes + 2 (E) 88.46
Lens Detector 6 CNN 2 +4 Hys + 4(E) 89.51

Lens Detector 13| 8 CNN Layers + 8 Hj»g + 4 (E) 91.94
Lens Detector 14| 8 CNN Layers + 8 Hi»5 + 4 (E) 91.95
Lens Detector 15| 8 CNN Layers + 8 Hjxg + 4 (E) 92.99
Lens Detector 16| 16 CNN Layers + 8 Hj»3 + 8 (E) 90.97
Lens Detector 17| 16 CNN Layers + 8 H;»5 + 8 (E) 92.19
Lens Detector 18| 16 CNN Lavers + 8 Hi»x + 8 (E) 02.21

» Models without Transfer learning performs slightly better than Models with pretrained CNNs.



Encoder Models vs Models participated &

INn the Challenge

Name —TAUROC |98, 8, | Modei vpe  [ERIEN

Lens Detector 16 0.962 0.225 0.24 Transformer

Lens Detector 16 surpassed all
Manchester SYM 0.93 0.220 0.35 SVM/Gabor o _

the models participated in the
Lens Detector 11 0.966 0.219 0.34 Transformer Challenge.
Lens Detector 15 0.978 0.14 0.48 Transformer
CMU-Deeplens 0.98 0.09 0.45 CNN

Resnet-ground3

LASTRO EPFL 0.97 0.07 0.11  CNN



e auoc i, noce e IR

Lens Detector 9 0.959 0.789 Transformer
Lens Detector 9 surpassed all the
Lens Detector 8 0.954 0.0 0.758 Transformer o .
models participated in the
Lens Detector 17 0.973 0.0 0.717 Transformer
CMU-Deeplens 0.98 009 0.45 CNN Challenge.

Resnet-ground3

Manchester SVM 0.93 0.220 0.35 SVM/Gabor

LASTRO EPFL 0.97 0.07 0.11  CNN



DI  AUROC

CMU-Deeplens
Resnet-ground3d

Lens Detector 21

CMU-Deeplens
Resnet-Voting

Lens Detector 15
Lens Detector 18
LASTRO EPFL

0.98

0.98

0.98

0.978
0.976
0.97

0.09

0.0

0.02

0.140
0.113
0.07

0.45

0.64

0.10

0.48
0.59
0.11

Lens Detector 21 scored equal to

Transformer _ .
the highest reported AUROC in

CNN the Challenge.

Transformer

Transformer

CNN



Comparison to previous searches

based on KIDS data 1/2

LiNKS, Petrillo etal. 2019:

> 4 channels model
» Lenses associated with galaxiesz < 0.4 - 11 out of 41 in the computed tiles
» Our methodfound 4 out of 11

» 3 channels model
» Lenses connected with galaxiesz< 0.4 - 11 out of 41 in the computed tiles
» Our methodfound 3 out of 11

Compared against:


https://www.astro.rug.nl/lensesinkids/1_bonus.html

