

Generative Models for Intelligent Medical Data Analysis

Kamila Kalecińska

& Dose-3D Consortium

Agenda

- 1. Generative Models
- 2. Dose-3D Project
- 3. Medical Data
- 4. Technologies
- 5. Intelligent Analysis Towards Improving Treatment Plans
- 6. Summary

Generative Models

https://realpython.com/generative-adversarial-networks/

- → Variational Autoencoder (VAE)
- → Generative Adversarial Networks (GANs)

Dose-3D Project

A reconfigurable detector for measuring the spatial distribution of radiation dose for applications in the preparation of individual patient treatment plans.

POIR.04.04.00-00-15E5/18

Dose-3D Project

Intelligent Data Analysis Towards Improving Treatment Plans

- → Medical Data Segmentation for Detector Geometry
- → Medical Image Data Augmentation
- → Patient Detector Resolution Scaling
- → Photon Beam Generation

Medical Data

- variety of data
- variety of formats
- complexity of data
- privacy issues

https://www.scnsoft.com/blog/health-data-analyticsoverview

Medical Data

- **DICOM** (Digital Imaging and Communications in Medicine)
- **DICOM-RT** (DICOM for Radiotherapy)
- NITTI (Neuroimaging Informatics Technology Initiative)

- acceleration with NVIDIA's GPU
- * modern deep learning frameworks: Monai, Clara

Technologies - Clara Train SDK

- → state of the art pre-trained models
- → training performance increased by up to 50x with domain-specific GPU optimization for 3D Imaging model
- → powerful techniques like AutoML, that enable automatic parameter tuning and make iterative experimentation faster
- → Federated Learning ML technique that trains an algorithm across multiple devices/servers holding data samples without exchanging them
- → Monai on backend

Technologies - Monai

- → open-source framework
 for deep learning in
 healthcare imaging
- → Provides set of tools for medical data transformations

https://monai.io/docs.html

Technologies - Preprocessing Monai Transforms

- **LoadImage**: Load medical specific formats file from provided path
- **Spacing**: Resample input image into the specified pixel diimensions
- **Orientation**: Change the image's orientation into the specified axcodes
- RandGaussianNoise: Perturb image intensities by adding statistical noises
- **NormalizeIntensity**: Intensity Normalization based on mean and standard deviation
- **Rand2DElastic**: Random elastic deformation and affine in 2D
- Rand3DElastic: Random elastic deformation and affine in 3D

200	200	200	270	0/20
01.0	200	6,00	8.00	0, 19
0. 5	1	1		
<u>N</u> ōb	<u>T</u>	100	100	100
100	0	100	129	22
	•	•	•	•
•	•	•	•	•
•	•	•	•	•
•	•	•	•	•
•	•	•	•	•

Technologies – Post-processing Monai Transforms

https://docs.monai.io/en/stable/highlights.html

(e) Map contour to image

Intelligent Data Analysis Towards Improving Treatment Plans

- → Medical Data Segmentation for Detector Geometry
- → Medical Image Data Augmentation
- → Patient Detector Resolution Scaling
- → Photon Beam Generation

Medical Data Segmentation for Detector Geometry

3D DICOM images

images + contours (DICOM + DICOM RT Structures)

Medical Data Segmentation for Detector Geometry

Medical Data Segmentation for Detector Geometry

Inside the "black box" of intelligent analysis:

- data preprocessing preparing training dataset: creating ground truth segmentation masks, resolution resampling, format conversion, data augmentation Python, 3D Slicer, Monai
- segmentatiation & classification developing an 3d deep learning model able to automatically classify each voxel to a class (e.g. cancer, surrounding organs) NVIDIA Clara, Monai, Pytorch
- □ data post-processing export data to DICOM format Python, 3D Slicer

Data Preprocessing for Segmentation

Preparing training data for segmentation:

- decoding from input format
- normalizing and scaling
- resampling
- cleaning from outliers

Decoding and visualization of DICOM RT Structure Set and creation of mask that can be then saved in any image format and used in the training process

Data Preprocessing for Segmentation

Medical Image Data Augmentation with GANs

Medical Image Data Augmentation with GANs

Original (real) data samples from a public database [2] (left) data generated (fake) by generative GANs model built and trained using MONAI.

Patient - Detector Resolution Scaling

Patient - Detector Resolution Scaling

https://www.researchgate.net/figure/Illustration-of-thecomponents-of-a-typical-Varian-linear-acceleratortreatment-head-in_fig8_5654346

- → Monte Carlo simulation of photon beam therapy (PBT)
- → Goal: obtain phase spaces (Photons data) with generative models instead of time consuming simulations
- → Variational Autoencoders (VAE)

Photons in a phase space are described by six parameters: position coordinates X, Y in the plane perpendicular to the beam axis, direction of momentum (dX, dY, dZ) which is a unit vector and energy of the photon.

The VAE model is trained to learn 6D probability distribution of the above six photon parameters.

→ State of art: D Sarrut , N Krah, J M Létang "Generative adversarial networks (GAN) for compact beam source modelling in Monte Carlo simulations" (2019)

https://www.researchgate.net/figure/Variational-AutoEncoder-VAE-architecture_fig1_333573656

- BetaVAE
 Loss Function = MSE + Beta * KL divergence
- MKMMD_VAE
 - $\mathsf{Loss}\ \mathsf{Function} = \mathsf{MSE} + \mathsf{MKMMD}\ \mathsf{LOSS}$
- MMD_WAE Loss Function = MSE + MMD LOSS
- InfoVAE

 $\label{eq:loss} \begin{array}{l} \mbox{Loss Function} = \mbox{MSE} + \mbox{MMD LOSS} + \mbox{KL divergance} \\ \mbox{[Zhao et al., 2017]} \end{array}$

MKMMD_VAE: original vs. decoded

MKMMD_VAE: original vs. generated

Summary

- generative models have a huge potential to help with medical data challenges
- we observe the technology development in this direction
- already obtained results are promising
- there are still many areas to be explored

Thank You!

