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The need for faster simulations

• CERN has the biggest computional grid in the 
world ~800,000 CPU cores

• The majority of the compution power is used
for HEP simulations

• Standard simulation procedures are extremally
costly (Monte Carlo)

• Machine learning offers an alternative cost-
efficient approach to the problem
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Zero Degree Calorimeter

3

• The most costly simulations are calorimeter response simulations

• The Zero Degree Calorimeter ZDC is located in the ALICE experiment

• It detects the energy of the spectator nucleons in order to determine the 
overlap region in nucleus-nucleus collisions

• Consists of 44x44 optic fibers arranged in a grid

• Principle of operation is based on the detection of Cherenkov light produced by 
the charged particles of the shower in the fibers. 
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Fast simulation of the ZDC
• We treat the response of the ZDC as a 44x44 
1-channel image 

• The image is produced in reponse to a particle
described by 9 conditonal variables
(Energy, mass, charge, Pxyz, Vxyz)

• We have gathered 10 milion pairs of ZDC 
responses and corresponding particle attributes

• The distribution of „channels” in generated data 
should be simillar to the distribution in original
simulation
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Detecting non-zero ZDC responses
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Particle data
Mass, Energy, Vxyz, Pxyz, 

Charge

Detecting non-zero ZDC 
responses using

Random Forest

Particles cousing
empty ZDC 
responses

Particles cousing

non-zero ZDC 
responses
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Detecting non-zero ZDC responses
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Random Forest
Input data:

9 particle features - mass, energy, charge, Vxyz, Pxyz

Output data: 

particle will produce empty OR non-zero response

Postive: nonzero response
Negative: zero response
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Generating non-zero responses
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Particle data
Mass, Energy, Vxyz, 

Pxyz, Charge
Generative 

Models

Random noise 

Postprocessing
Reversing log 
transformation

Scaling
z = (x - μ) / σ

• The input of the simulation is random noise and conditional parameters
(Energy, primary vertex position (x, y, z), momenta (x, y, z), mass, charge) 

• We scale the conditional input with standard scaler
• We transform the ZDC response images with logarithm before using them as real training data
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Calculation of channels
We started with validation on the basis of standard metrics (MSE, differences between 
placement of central hit for generated and original simulations), but simulations are too 
random

Statistical comparison of output values:
• 5 Channel values are calculated by summing pixels (photons) that are located at the 

specific fields of a checkerboard grid
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Validation
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Channel 
count 272. 44. 95. 21. 397

Channel 
count 186. 43. 125. 44. 436.

Original
Simulations

Generative
Simulations

Compare channels 
distributions 

(e.g. Wasserstein 
distance)

Gather 
distribution

Gather 
distribution
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Conditonial Variational Autencoder
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• The encoder compresses 
the data into a multivariate 
normal distribution of the 
latent variables 

• The decoder attempts to 
decompress the data and 
reconstruct the input 

• After training, the encoder 
is discarded and the 
decoder can be used to 
generate new data
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VAE results

ORG

GEN

Channel distribution comparision Example responses

Wasserstein distance

model MEAN CH1 CH2 CH3 CH4 CH5

VAE 6.37 4.57 5.15 4.15 9.13 13.68



conditional DC-GAN
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• The generator learns to 
transform random noise into
realistic examples of data

• The discriminator learns to 
distinguish real data from 
generated data

• The two networks compete
with each other during training. 
This process leads to a realistic
generator that can be used to 
generate new data
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GAN results

ORG

GEN

Channel distribution comparision Example responses

Wasserstein distance

model MEAN CH1 CH2 CH3 CH4 CH5

GAN 8.25 4.36 5.46 7.28 9.13 14.99



End-to-end Sinkhorn autoencoder

Solution:

• No implicit regularisation of autoencoder’s latent 
space

• Approximation of original data embeddings with
deterministic neural network

• Joint optimisation of both neural networks

• Conditional information added to noise
generator

• Wasserstein distance between embeddings
concatenated with conditional values

• Original data distribution on latent space

Problem: “blurry” output of VAE due to latent 
space regularization
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e2e SAE results
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model MEAN CH1 CH2 CH3 CH4 CH5

VAE 6.45 4.75 5.03 4.23 4.23 13.72

GAN 8.25 4.36 5.46 7.28 9.13 14.99

E2e SAE 6.27 4.17 5.05 4.05 4.03 13.58
Upper bound 1.25 1.72 0.41 1.46 1.05 1.68

Example responses

Wasserstein distance



Adding an auxiliary regressor to GAN
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Soluton:
• An auxiliary regressor trained to 

output the position coordinates of the 
maximum number of photons in the 
input image. 

• The regressor provides an additional
source of loss to the generator by 
comparing the coordinates of the 
maximum of the generated examples
with the maximum coordinates of 
corresponding sample in the training set.
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Idea: We can control geometric
properties of the generated output
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GAN + aux REG results

ORG

GEN

Channel distribution comparision Example responses

Wasserstein distance

model MEAN CH1 CH2 CH3 CH4 CH5
GAN + 
auxREG

7.20 4.24 8.42 3.54 4.56 15.19
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Adding postprocessing - scaling generator response
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Idea: Since we can explicitly evaluate the quality of 
generated results (e.g. using the Wasserstein distance) 
we can find an optimal value to scale the response of the 
generator
Here we see effects of multiplication of generator output
values by const =0.96

Change in Wasserstein distance

model MEAN CH1 CH2 CH3 CH4 CH5
GAN + 
auxREG

7.20 4.24 8.42 3.54 4.56 15.19

GAN + 
auxREG + 
scaling

5.16 2.17 4.63 4.89 6.71 8.59
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Problem: GANs work well 
for “consistent” showers …

ORG

GEN

… but fail to simulate 
possible diverse outcomes

ORG

GEN

3 ZDC responses generated for the same particle (same input conditonal data)
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Methods to increase diversity 
of GAN samples exist …

ORG

GEN

… but introduce problems 
for “consistent” showers

ORG

GEN

3 ZDC responses generated for the same particle (same input conditonal data)
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Selective increase of diversity

𝑑𝑖𝑣 = ∝! ×
𝑑" 𝐺 𝑧#, 𝑐 , 𝐺 𝑧$, 𝑐

𝑑% 𝑧#, 𝑧$

&#

d! - measure of distance between 2 images generated
from different noise vectors z", z#

We use L"norm between features extracted from the 
discrimiantor penultimate layer

d$ - measure of distance between 2 input noise vectors
We use L"(z", z#)

∝% - measure of training samples diversity
for this particular set of conditonals c

We use mean standard deviation of pixels
normalized from 0 to 1

𝐿 = 𝐿+,- + 𝜆 𝐿./0
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SDI-GAN generates diverse 
results …

ORG

GEN

… and keeps consistency 
where needed

ORG
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3 ZDC responses generated for the same particle (same input conditonal data)
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Improvement of simulation quality
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Our method:
• increases the diversity of generated samples for a selected subset of input data
• leads to higher simulation fidelity by:
• decreasing the differences between the distribution of original and fast simulation
• smoothing the distribution of the generated results.



Summary
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model WS MEAN WS CH1 WS CH2 WS CH3 WS CH4 WS CH5
cond VAE 6.45 4.75 5.03 4.23 4.34 13.72
cond DCGAN 8.25 4.35 5.46 7.28 9.13 14.98
cond end2end SAE 6.27 4.17 5.05 4.05 4.03 13.56
cond DCGAN + auxREG 7.20 4.24 8.42 3.54 4.55 15.19
cond DCGAN  + postproc 5.71 2.53 3.92 3.64 5.93 12.55
cond DCGAN + auxREG + postproc 5.16 2.71 4.63 4.89 6.71 8.59
cond DCGAN + selectiv div increase 4.51 2.21 4.03 4.38 6.17 8.04

The fast simulation model results in a ~100x speedup compared to the Monte Carlo-based approach.

Main takeaways: 
• Generative machine learning models offer a cost-efficient alternative to Monte-Carlo based simulations
• Simulating HEP processes requires the generative models to follow strict physciall properties of the 

simulation
• However, this domain also offers new possibilities to improve the performance of the generative 

models and provides objective evaluation metrics


