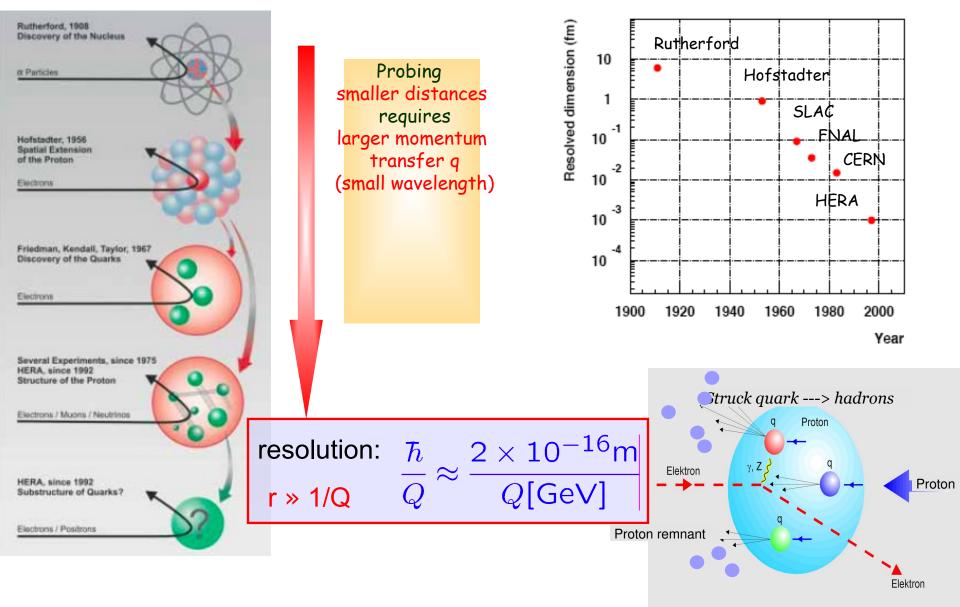
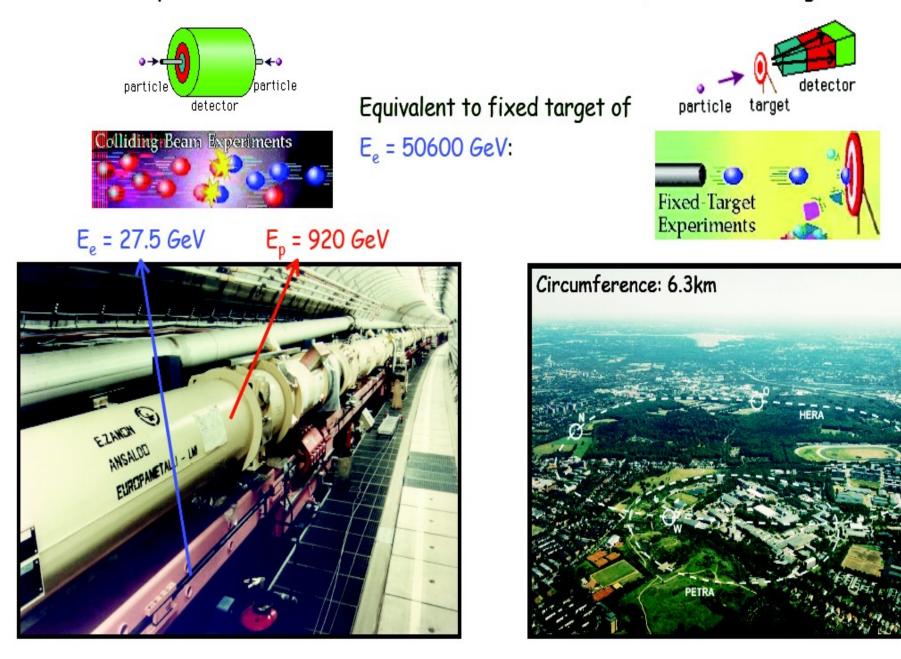
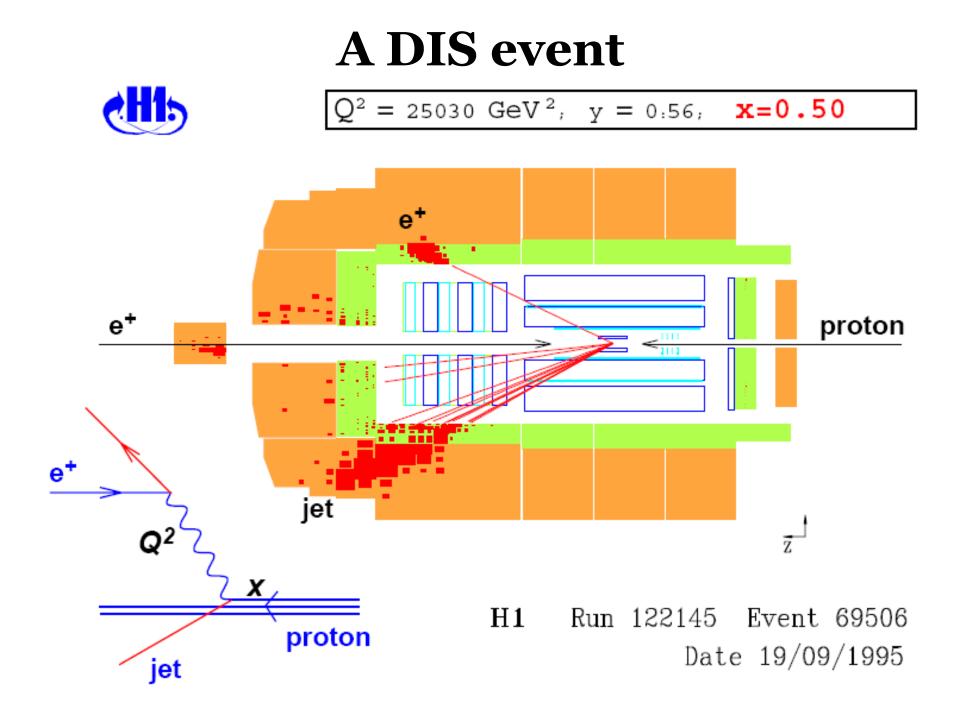

Basics of Color Glass Condensate

Jamal Jalilian-Marian

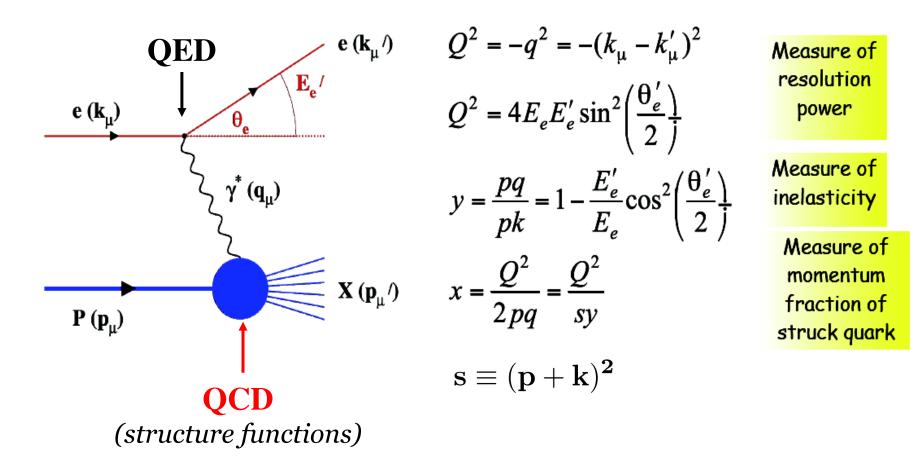

Baruch College, City University of New York New York NY

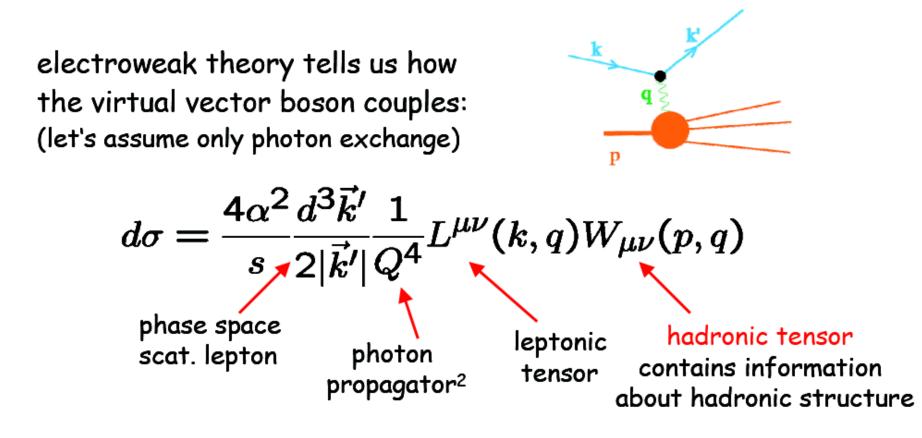
Quantum ChromoDynamics (QCD)




strong force confining quarks inside a proton (and keeping protons inside a nucleus)

Deep Inelastic Scattering (DIS)

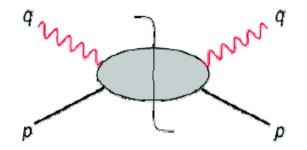

Collider experiment: Electron-Proton collisions at HERA (DESY, Hamburg, Germany)


Deep Inelastic Scattering (DIS) probing hadron structure

Kinematic Invariants

Deep Inelastic Scattering

first analysis of DIS does not require any knowledge about QCD


(can be easily generalized to W/Z-boson exchange)

with
$$L_{\mu\nu} = 2(k^{\mu}k'^{\nu} + k^{\nu}k'^{\mu} - g^{\mu\nu}k \cdot k')$$

Deep Inelastic Scattering

Strong interactions: contained in the hadronic tensor ${f W}_{\mu
u}({f p},{f q})$

to all orders in the strong interaction $W_{\mu\nu}$ is given by the square of $\gamma^*(q) h(p) \rightarrow X$

symmetries (parity, Lorentz), hermiticity & current conservation tell us that $W^{\nu\mu}=W^{\mu\nu*}$ $q_{\mu}W^{\mu\nu=0}$

$$W_{\mu\nu}(p,q) = -\left(g_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{q^2}\right) F_1(x,Q^2) + \left(p_{\mu} - q_{\mu}\frac{p \cdot q}{q^2}\right) \left(p_{\nu} - q_{\nu}\frac{p \cdot q}{q^2}\right) \frac{1}{p \cdot q} F_2(x,Q^2)$$
structure functions

<u>space-time</u> picture of DIS

light cone variables

advantages: boosting is easy

separation of large and small components of vectors

$$P^{+} \equiv \frac{E + P_{z}}{\sqrt{2}}$$

$$P^{-} \equiv \frac{E - P_{z}}{\sqrt{2}} \quad (\mathbf{V}^{+}, \mathbf{V}^{-}, \mathbf{V}_{t}) \rightarrow (\mathbf{e}^{\omega} \mathbf{V}^{+}, \mathbf{e}^{-\omega} \mathbf{V}^{-}, \mathbf{V}_{t}) \text{ with } \mathbf{e}^{\omega} = \frac{\mathbf{Q}}{\mathbf{x} \mathbf{m}_{h}}$$

$$P_{t} = P_{t}$$

			_ //	*
4-vector	hadron rest frame	Breit frame		р
$(p^+,p^-,ec{p}_T)$	$rac{1}{\sqrt{2}}(m_h,m_h,ec{0})$	$rac{1}{\sqrt{2}}(rac{Q}{x},rac{xm_h^2}{Q},ec{0})$		
(q^+,q^-,\vec{q}_T)	$\left \begin{array}{c} rac{1}{\sqrt{2}}(-m_h x, rac{Q^2}{m_h x}, ec{0}) ight. ight.$	$\left \begin{array}{c} rac{1}{\sqrt{2}}(-Q,Q,ec{0}) \end{array} \right $	q	
			- /	

<u>space-time</u> picture of DIS

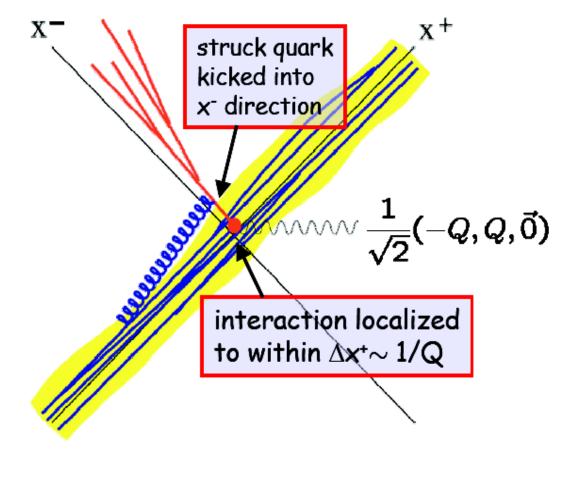
х-

world-lines

of partons

 \mathcal{Z}

simple estimate for typical time-scale of interactions among the partons inside a fast-moving hadron:


rest frame: $\Delta x^+ \sim \Delta x^- \sim \frac{1}{m}$ Breit frame: $\Delta x^+ \sim \frac{1}{m} \frac{Q}{m} = \frac{Q}{m^2}$ large $\Delta x^- \sim \frac{1}{m} \frac{m}{Q} = \frac{1}{Q}$ small

> interactions between partons are spread out inside a fast moving hadron

How does this compare with the time-scale of the hard scattering?

space-time picture of DIS

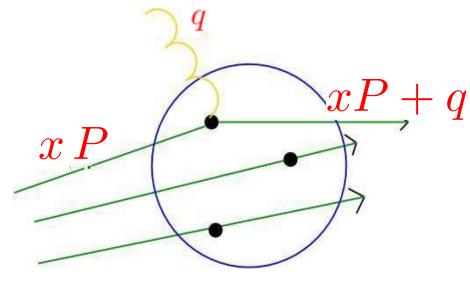
now let the virtual photon meet our fast moving hadron ...

upshot:

- partons are free during the hard interaction
- hadron effectively consists of partons that have momenta $(p_i^+, p_i^-, \vec{p_i})$
- convenient to introduce momentum fractions $0 < \xi_i \equiv p_i^+/p^+ < 1$

what is inside a hadron: parton model

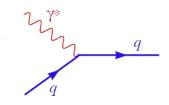
Bjorken limit


$$\mathbf{Q^2}, \, \mathbf{S} \,
ightarrow \infty \, \mathbf{x_{Bj}} = rac{\mathbf{Q^2}}{\mathbf{S}}$$

structure functions depend only on x_{Bj}

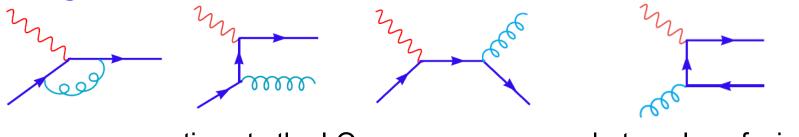
Feynman:

parton constituents of proton are "free" on time scale $1/Q << 1/\Lambda$ (interaction time scale between partons)


$$\mathbf{F_2}(\mathbf{x}) \equiv \sum_{\mathbf{f}}^{\mathbf{f}} \mathbf{e_f^2} \mathbf{x} [\mathbf{q_f}(\mathbf{x}) + \bar{\mathbf{q}_f}(\mathbf{x})]$$

 $\mathbf{x}_{\mathbf{Bj}} = \mathbf{x}$

DIS in the QCD-improved parton model


we got a long way (parton model) without invoking QCD

now we have to study QCD dynamics in DIS

- this leads to similar problems already encountered in e⁺e⁻

let's try to compute the $O(\alpha_s)$ QCD corrections to the naive picture

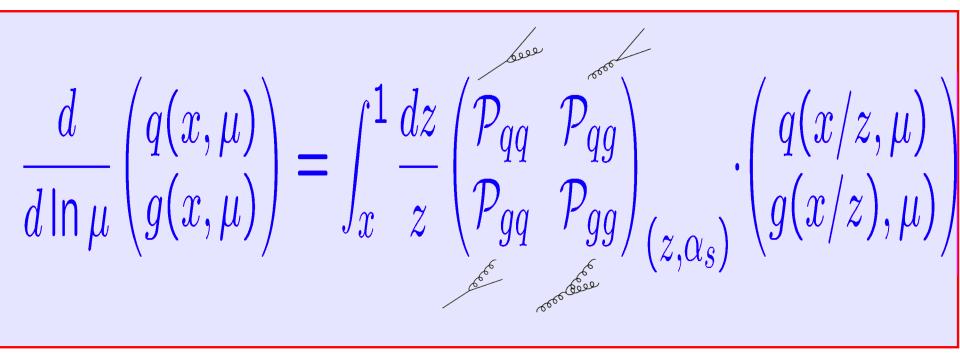
 α_{s} corrections to the LO process

photon-gluon fusion

caveat: expect divergencies

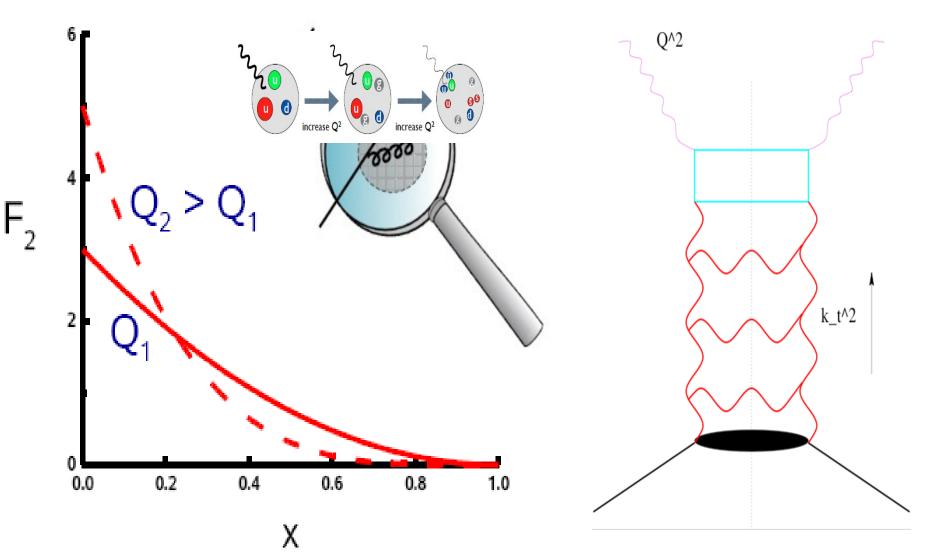
related to soft/collinear emission or from loops

what to do with infinities? introduce "**regulator**" in the intermediate stages, remove it at the end

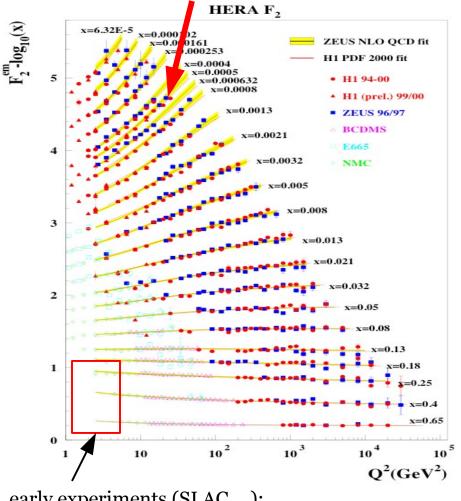

general structure of the QCD corrections $[O(\alpha_s)]$

using small quark/gluon mass as a regulator:

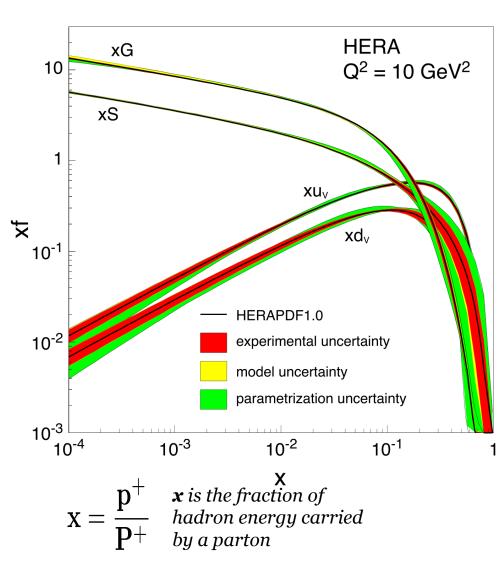
divergences absorbed into pdf


$$\mathbf{F_2}(\mathbf{x}, \mathbf{Q^2}) \equiv \sum_{\mathbf{f}}^{f} \mathbf{e_f^2} \mathbf{x} [\mathbf{q_f}(\mathbf{x}, \mathbf{Q^2}) + \bar{\mathbf{q}_f}(\mathbf{x}, \mathbf{Q^2})]$$

DGLAP "evolution" equation


DGLAP "evolution" equation:

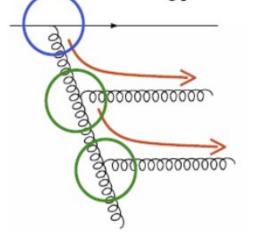
scale dependence of parton distribution functions<u>Dokshitzer-Gribov-Lipatov-Altarelli-Parisi</u>


Deep Inelastic Scattering

QCD: <u>scaling violations</u>

early experiments (SLAC,...): scale invariance of hadron structure

 $F_2 \equiv \sum e_f^2 x q(x, Q^2)$ $f = q, \bar{q}$



What drives the growth of parton distributions?

Splitting functions at leading order $O(\alpha_s^0)$ $(x \neq 1)$

$$\begin{split} P_{qq}^{(0)}(x) &= C_F \frac{1+x^2}{1-x} \\ P_{qg}^{(0)}(x) &= \frac{1}{2} \Big[x^2 + (1-x)^2 \Big] \\ P_{gq}^{(0)}(x) &= C_F \frac{1+(1-x)^2}{x} \\ P_{gg}^{(0)}(x) &= 2C_A \Big[\frac{x}{1-x} + \frac{1-x}{x} + x(1-x) \Big] \end{split}$$

At small x, only P_{gq} and P_{gg} are relevant.

\rightarrow Gluon dominant at small x!

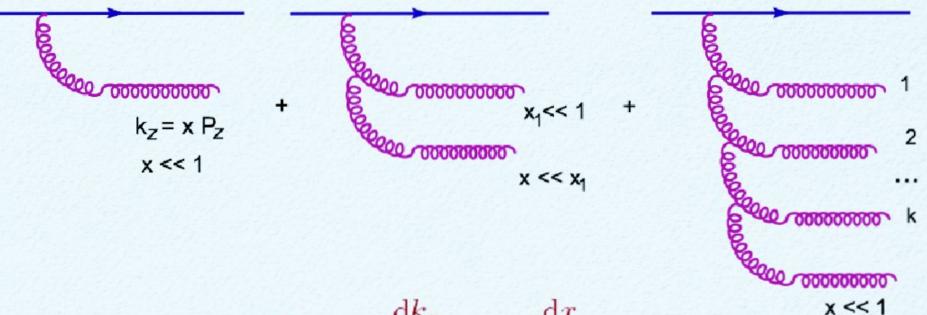
The double log approximation (DLA) of DGLAP is easily solved.


-- increase of gluon distribution at small x

 $\mathbf{xg}(\mathbf{x}, \mathbf{Q^2}) \sim \mathbf{e}^{\sqrt{lpha_{\mathbf{s}} \left(\mathbf{log1/x}\right) \left(\mathbf{logQ^2}\right)}}$

QCD in the Regge-Gribov limit

recall $X_{Bj} \equiv \frac{Q^2}{S}$ $\mathbf{S}
ightarrow \infty, \, \mathbf{Q^2} \, \mathbf{fixed} : \mathbf{X_{Bj}}
ightarrow \mathbf{0}$



Regge

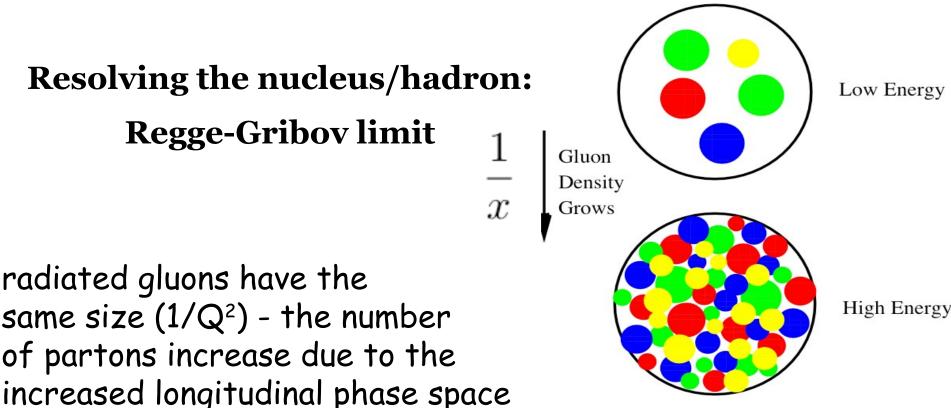
Gribov

gluon radiation at small x :pQCD

The infrared sensitivity of bremsstrahlung favors the emission of 'soft' (= small-x) gluons $P_{gg}(x) \sim \frac{1}{x}$ for $x \to 0$

$$\mathrm{d}\mathcal{P} \propto \alpha_s \frac{\mathrm{d}k_z}{k_z} = \alpha_s \frac{\mathrm{d}x}{x}$$

The 'price' of an additional gluon:

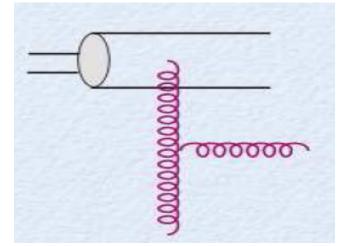

$$\mathcal{P}(1) \propto \alpha_s \int_x^1 \frac{\mathrm{d}x_1}{x_1} = \alpha_s \ln \frac{1}{x} \qquad n \sim e^{\alpha_s \ln 1/x}$$

Resolving the nucleus/hadron: Regge-Gribov limit

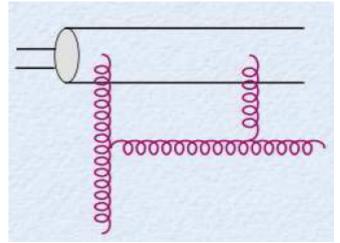
radiated gluons have the

same size $(1/Q^2)$ - the number

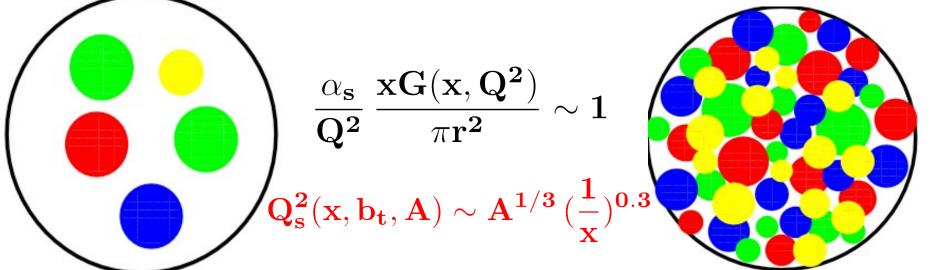
of partons increase due to the

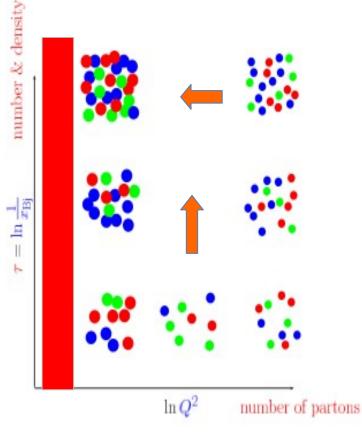


hadron/nucleus becomes a dense system of gluons: <u>concept of a quasi-free parton is not useful</u>


Physics of strong color fields in QCD, multi-particle productionpossibly discover novel universal properties of theory in this limit

break down of pQCD at small x


"attractive" bremsstrahlung vs. "repulsive" recombination

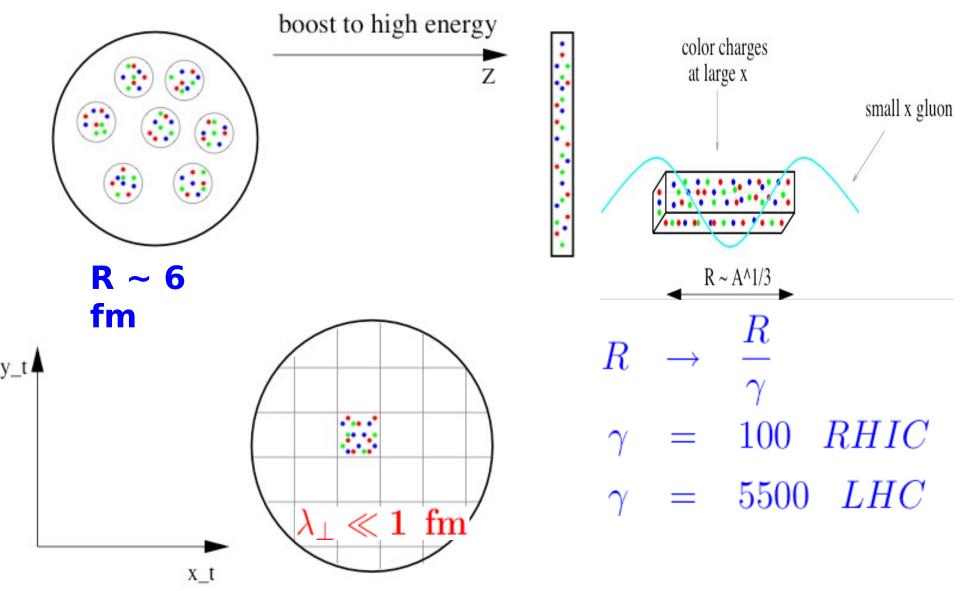

included in pQCD

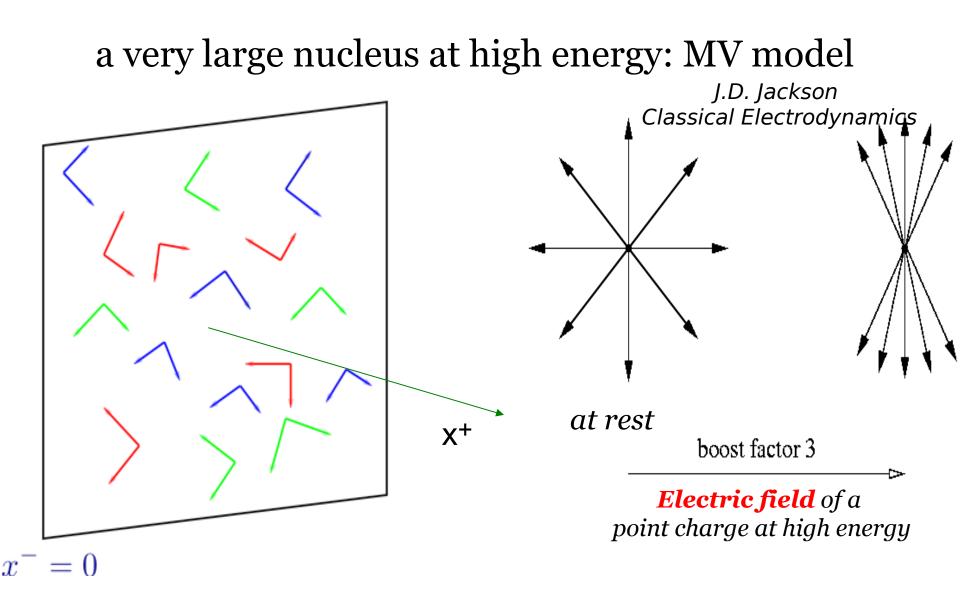
not included in pQCD (collinear factorization)

Low x QCD: many-body dynamics of universal gluonic matter (CGC)

How does this happen ?

How do correlation functions of these evolve ?

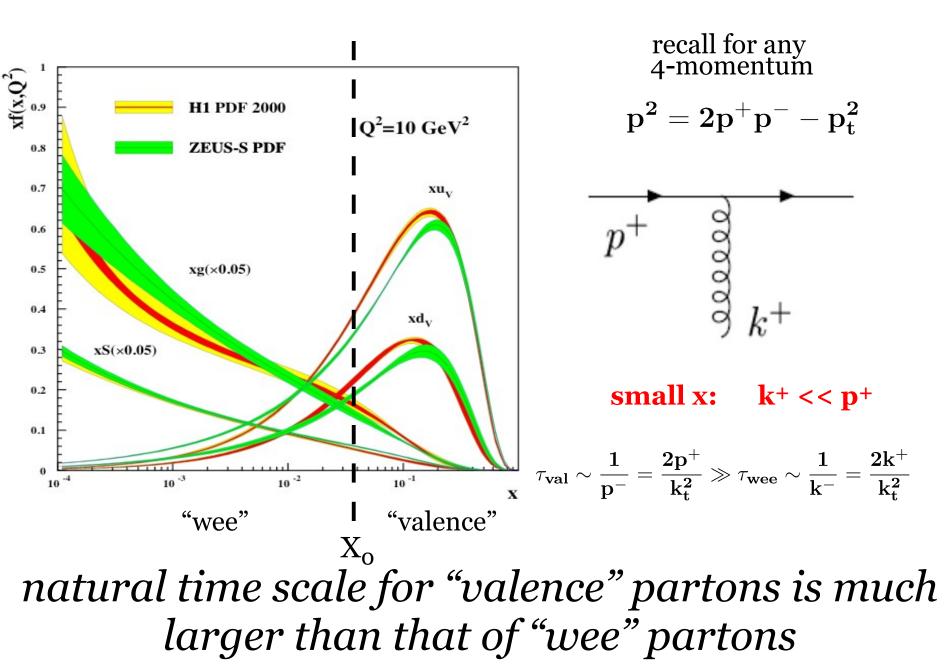

Are there scaling laws?

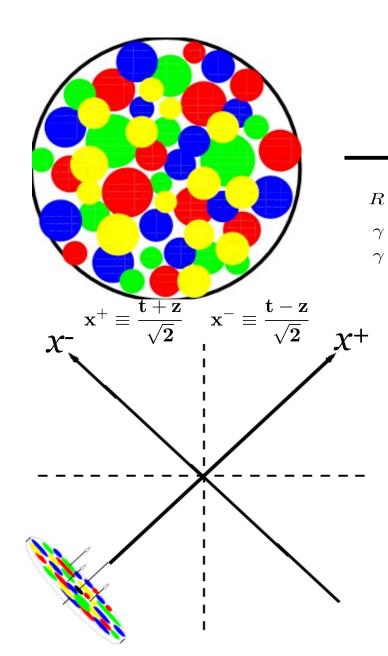

Can CGC explain aspects of HEC ?

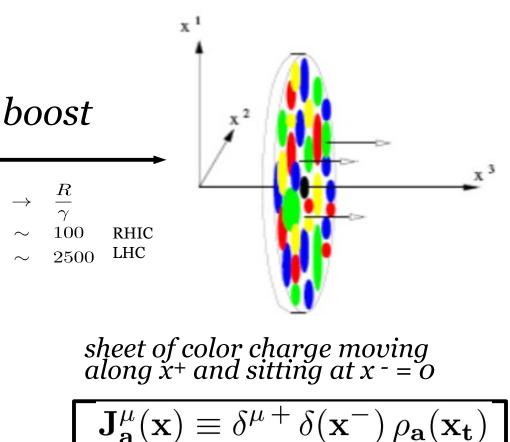
Initial conditions for hydro? Thermalization ? Long range rapidity correlations ? Azimuthal angular correlations ? Nuclear modification factor ?

A model of nuclei at high energy

(a system of color charges)

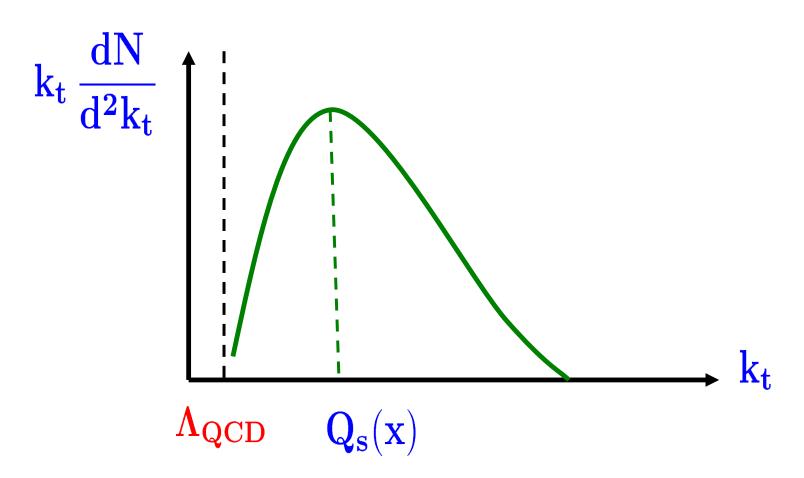



random **color Electric & Magnetic fields** in the plane of the fast moving nucleus


 $F_a^{+i} \sim \delta(x^-) \, \alpha_a^i(x_t)$

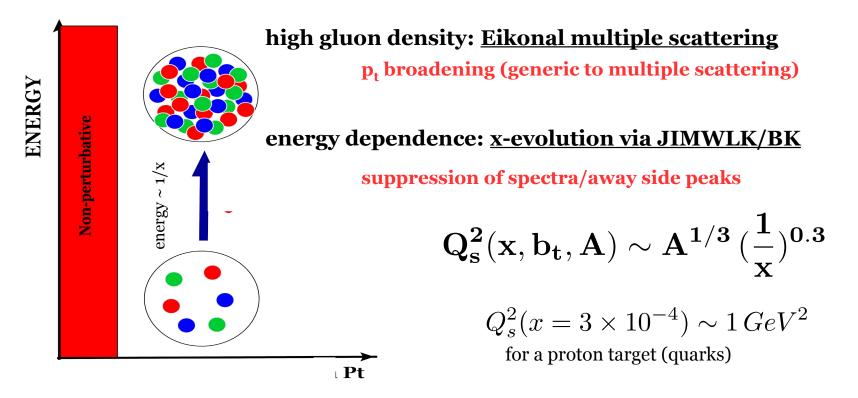
high x partons as static color charges ρ

a very large nucleus at high energy: MV model



color current

color charge


 $\mathbf{A}_{\mathbf{i}}^{\mathbf{a}}(\mathbf{x}^{-},\mathbf{x}_{\mathbf{t}}) = \theta(\mathbf{x}^{-}) \, \alpha_{\mathbf{i}}^{\mathbf{a}}(\mathbf{x}_{\mathbf{t}})$ with $\partial_i \alpha_i^a = g \rho^a$

small x gluons in a hadron

most gluons in the wave function of a hadron have momentum Q_s $\mathbf{Q_s}(\mathbf{x}, \mathbf{b_t}, \mathbf{A}) \gg \boldsymbol{\Lambda_{QCD}}$

QCD at high energy/small x: gluon saturation

a framework for multi-particle production in QCD at small x/low p_t

 $\mathbf{x} \leq \mathbf{0.01}$ $\alpha_s \ln (x_v/x) \sim 1$

scattering from a dense system of gluons

$$J_{a}^{\mu} \simeq \delta^{\mu-} \rho_{a}$$

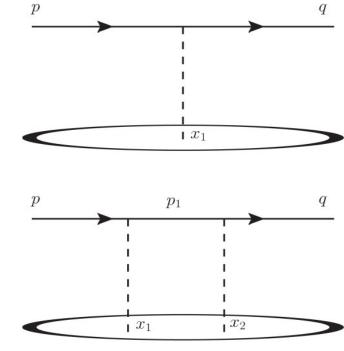
$$D_{\mu} J^{\mu} = D_{-} J^{-} = 0$$

$$\partial_{-} J^{-} = 0 \quad (\text{in } A^{+} = \text{o gauge})$$

$$does \text{ not depend on } x^{-}$$
EOM: solution
$$A_{a}^{-} (x^{+}, x_{t}) \equiv n^{-} S_{a} (x^{+}, x_{t})$$

$$n^{\mu} = (n^{+} = 0, n^{-} = 1, n_{t} = 0)$$
recall (eikonal approx):
$$\bar{u}(q) \gamma^{\mu} u(p) \rightarrow \bar{u}(p) \gamma^{\mu} u(p) \sim p^{\mu}$$

$$\bar{u}(q) A u(p) \rightarrow p \cdot A \sim p^{+} A^{-}$$


scattering of a quark from background color field

 $A_a^-(x^+, x_t)$

$$i\mathcal{M}_{1} = (ig) \int d^{4}x_{1} e^{i(q-p)x_{1}} \bar{u}(q) \left[\not h S(x_{1}) \right] u(p)$$

= $(ig)(2\pi)\delta(p^{+}-q^{+})\int d^{2}x_{1t} dx_{1}^{+} e^{i(q^{-}-p^{-})x_{1}^{+}} e^{-i(q_{t}-p_{t})x_{1t}}$
 $\bar{u}(q) \left[\not h S(x_{1}^{+},x_{1t}) \right] u(p)$

$$i\mathcal{M}_2 = (ig)^2 \int d^4x_1 \, d^4x_2 \, \int \frac{d^4p_1}{(2\pi)^4} \, e^{i(p_1-p)x_1} \, e^{i(q-p_1)x_2}$$
$$\bar{u}(q) \left[\not n \, S(x_2) \, \frac{i\not p_1}{p_1^2 + i\epsilon} \, \not n \, S(x_1) \right] \, u(p)$$

$$\int \frac{dp_1^-}{(2\pi)} \frac{e^{ip_1^-(x_1^+ - x_2^+)}}{2p^+ \left[p_1^- - \frac{p_{1t}^2 - i\epsilon}{2p^+}\right]} = \frac{-i}{2p^+} \,\theta(x_2^+ - x_1^+) \,e^{i\frac{p_{1t}^2}{2p^+}(x_1^+ - x_2^+)}$$

contour integration over the pole leads to path ordering of scattering

ignore all terms:
$$O(\frac{p_t}{p^+}, \frac{q_t}{q^+})$$
 and use $\oint \frac{\not p_1}{2n \cdot p} \oint = \oint$

$$i\mathcal{M}_2 = (ig)^2 (-i)(i) 2\pi\delta(p^+ - q^+) \int dx_1^+ dx_2^+ \theta(x_2^+ - x_1^+) \int d^2x_{1t} e^{-i(q_t - p_t) \cdot x_{1t}}$$

$$\bar{u}(q) \left[S(x_2^+, x_{1t}) \not h S(x_1^+, x_{1t}) \right] u(p)$$

$$\begin{array}{rcl} p & p_{1} & p_{2} & p_{n-1} & p_{n} & q \\ \hline & & & & & & & \\ i\mathcal{M}_{n} & = & 2\pi\delta(p^{+}-q^{+})\,\bar{u}(q)\,\not i \int d^{2}x_{t}\,e^{-i(q_{t}-p_{t})\cdot x_{t}} \\ & & & & & \\ \left\{(ig)^{n}\,(-i)^{n}(i)^{n}\int dx_{1}^{+}\,dx_{2}^{+}\,\cdots\,dx_{n}^{+}\,\theta(x_{n}^{+}-x_{n-1}^{+})\,\cdots\,\theta(x_{2}^{+}-x_{1}^{+})\right. \\ & & & & \\ \left[S(x_{n}^{+},x_{t})\,S(x_{n-1}^{+},x_{t})\,\cdots\,S(x_{2}^{+},x_{t})S(x_{1}^{+},x_{t})\right]\right\}u(p) \\ \\ & \text{sum over all scatterings} \qquad i\mathcal{M} = \sum_{n}i\,\mathcal{M}_{n} \\ i\mathcal{M}(p,q) &= 2\pi\delta(p^{+}-q^{+})\,\bar{u}(q)\,\not i \int d^{2}x_{t}\,e^{-i(q_{t}-p_{t})\cdot x_{t}}\,\left[V(x_{t})-1\right]\,u(p) \equiv \bar{u}(q)\tau_{f}u(p) \\ & \text{with } V(x_{t}) \equiv \dot{P}\exp\left\{ig\int_{-\infty}^{+\infty}dx^{+}\,n^{-}S_{a}(x^{+},x_{t})\,t_{a}\right\} \\ \\ & \frac{d\,\sigma^{q\,T \rightarrow q\,X}}{d^{2}p_{t}\,dy} \sim |i\mathcal{M}|^{2} \sim F.T. < Tr\,V(x_{t})\,V^{\dagger}(y_{t}) > \end{array}$$

quark anti-quark production in DIS at small x $\gamma^{\star} \mathbf{T} \rightarrow \mathbf{q}(\mathbf{p}) \, \bar{\mathbf{q}}(\mathbf{q}) \, \mathbf{X}$

$$i\mathcal{M} = \int \frac{a}{(2\pi)^4} \bar{u}(p) \left[S_F^0(p) \right]^{-1} S_F(p,k) \left[ie \, \epsilon(l) \right] S_F(k-l,-q) \left[S_F^0(-q) \right]^{-1} v(q)$$

with

$$S_F(p,q) \equiv S_F^0(p) \tau_F(p,q) S_F^0(q)$$

$$\tau_F(\mathbf{p},\mathbf{q}) \equiv (2\pi)\delta(\mathbf{p}^+ - \mathbf{q}^+) \not n \int \mathbf{d}^2 \mathbf{x_t} \, \mathbf{e}^{-\mathbf{i}(\mathbf{q_t} - \mathbf{p_t}) \cdot \mathbf{x_t}} \left[\theta(\mathbf{p}^+)\mathbf{V}(\mathbf{x_t}) - \theta(-\mathbf{p}^+)\mathbf{V}^{\dagger}(\mathbf{x_t})\right]$$

use spinor helicity methods to evaluate the Dirac algebra

quark anti-quark production in DIS at small **x**

$$\begin{split} \frac{d\sigma^{\gamma^*A \to q\bar{q}X}}{d^2\mathbf{p}\,d^2\mathbf{q}\,dy_1\,dy_2} = & \frac{e^2Q^2(z_1z_2)^2N_c}{(2\pi)^7}\delta(1-z_1-z_2)\int d^8x_{\perp}e^{i\mathbf{p}\cdot(\mathbf{x}_1'-\mathbf{x}_1)}e^{i\mathbf{q}\cdot(\mathbf{x}_2'-\mathbf{x}_2)}\\ & [S_{122'1'}-S_{12}-S_{1'2'}+1]\\ & \left\{4z_1z_2K_0(|\mathbf{x}_{12}|Q_1)K_0(|\mathbf{x}_{1'2'}|Q_1)+\right.\\ & \left.(z_1^2+z_2^2)\frac{\mathbf{x}_{12}\cdot\mathbf{x}_{1'2'}}{|\mathbf{x}_{12}||\mathbf{x}_{1'2'}|}K_1(|\mathbf{x}_{12}|Q_1)K_1(|\mathbf{x}_{1'2'}|Q_1)\right\} \end{split}$$
 with

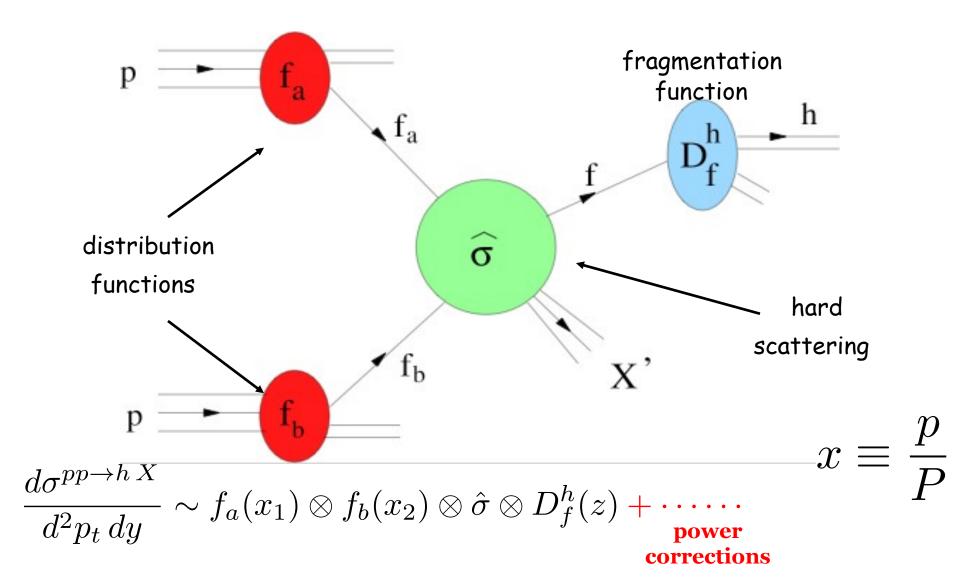
$$S_{122'1'} \equiv \frac{1}{N_c} Tr V(\mathbf{x}_1) V^{\dagger}(\mathbf{x}_2) V(\mathbf{x}_{2'}) V^{\dagger}(\mathbf{x}_{1'}) \qquad S_{12} \equiv \frac{1}{N_c} Tr V(\mathbf{x}_1) V^{\dagger}(\mathbf{x}_2)$$

DIS total cross section

$$\sigma_{\text{DIS}}^{\text{total}} = 2 \int_{0}^{1} d\mathbf{z} \int d^{2}\mathbf{x}_{t} d^{2}\mathbf{y}_{t} \left| \Psi(\mathbf{k}^{\pm}, \mathbf{k}_{t} | \mathbf{z}, \mathbf{x}_{t}, \mathbf{y}_{t}) \right|^{2} \sigma_{\text{dipole}}(\mathbf{x}_{t}, \mathbf{y}_{t})$$

$$can be written in closed form in terms of Bessel functions K_{o}, K_{1}$$

$$\mathsf{vertual} \quad \mathsf{vertual} \quad \mathsf{vertual$$


QED

Next time

- **One-loop corrections to the total cross section**
- Evolution equations solutions
- High energy heavy ion collisions (QGP)
- **Evidence from HERA/RHIC/LHC**
- **Current/Future directions**

pQCD in pp Collisions

collinear factorization: separation of soft (long distance) and hard (short distance)

